SMP、NUMA、MPP的区别

原创 2018-06-25 16:00 阅读(153)次

在计算机技术发展上,从系统架构上可以分为3种,

1.   对称多处理器结构 (SMP : Symmetric Multi-Processor) 

2.   非一致存储访问结构 (NUMA : Non-Uniform Memory Access) 

3.   海量并行处理结构 (MPP : Massive Parallel Processing)

这里参考 cnblogs的一篇文章来对这3种架构做出区分。原地址:https://www.cnblogs.com/nucdy/p/6011103.html

同时我通过对此博文的一些总结。

1. SMP(Symmetric Multi-Processor)


SMP (Symmetric Multi Processing),对称多处理系统内有许多紧耦合多处理器,在这样的系统中,所有的CPU共享全部资源,如总线,内存和I/O系统等,操作系统或管理数据库的复本只有一个,这种系统有一个最大的特点就是共享所有资源。多个CPU之间没有区别,平等地访问内存、外设、一个操作系统。操作系统管理着一个队列,每个处理器依次处理队列中的进程。如果两个处理器同时请求访问一个资源(例如同一段内存地址),由硬件、软件的锁机制去解决资源争用问题。

这就是我们平时的服务器或者PC的正常结构。

所谓对称多处理器结构,是指服务器中多个 CPU 对称工作,无主次或从属关系。各 CPU 共享相同的物理内存,每个 CPU 访问内存中的任何地址所需时间是相同的,因此 SMP 也被称为一致存储器访问结构 (UMA : Uniform Memory Access) 。对 SMP 服务器进行扩展的方式包括增加内存、使用更快的 CPU 、增加 CPU 、扩充 I/O( 槽口数与总线数 ) 以及添加更多的外部设备 ( 通常是磁盘存储 ) 。

SMP 服务器的主要特征是共享,系统中所有资源 (CPU 、内存、 I/O 等 ) 都是共享的。也正是由于这种特征,导致了 SMP 服务器的主要问题,那就是它的扩展能力非常有限。对于 SMP 服务器而言,每一个共享的环节都可能造成 SMP 服务器扩展时的瓶颈,而最受限制的则是内存。由于每个 CPU 必须通过相同的内存总线访问相同的内存资源,因此随着 CPU 数量的增加,内存访问冲突将迅速增加,最终会造成 CPU 资源的浪费,使 CPU 性能的有效性大大降低。实验证明, SMP 服务器 CPU 利用率最好的情况是 2 至 4 个 CPU 。

SMP最大的问题应该就是他横向扩展性几乎是0,在现在硬件升级飞速的情况下,你要在原来的服务器上增加内存,IO甚至CPU都是受限于主板的插槽数量的,而且不同代的CPU针脚不同等接口问题也是无法单独升级替换的。

2. NUMA(Non-Uniform Memory Access)


  由于 SMP 在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术, NUMA 就是这种努力下的结果之一。利用 NUMA 技术,可以把几十个 CPU( 甚至上百个 CPU) 组合在一个服务器内。NUMA 服务器的基本特征是具有多个 CPU 模块,每个 CPU 模块由多个 CPU( 如 4 个 ) 组成,并且具有独立的本地内存、 I/O 槽口等。由于其节点之间可以通过互联模块 ( 如称为 Crossbar Switch) 进行连接和信息交互,因此每个 CPU 可以访问整个系统的内存 ( 这是 NUMA 系统与 MPP 系统的重要差别 ) 。显然,访问本地内存的速度将远远高于访问远地内存 ( 系统内其它节点的内存 ) 的速度,这也是非一致存储访问 NUMA 的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同 CPU 模块之间的信息交互。

利用 NUMA 技术,可以较好地解决原来 SMP 系统的扩展问题,在一个物理服务器内可以支持上百个 CPU 。

但 NUMA 技术同样有一定缺陷,由于访问远地内存的延时远远超过本地内存,因此当 CPU 数量增加时,系统性能无法线性增加。如 HP 公司发布 Superdome 服务器时,曾公布了它与 HP 其它 UNIX 服务器的相对性能值,结果发现, 64 路 CPU 的 Superdome (NUMA 结构 ) 的相对性能值是 20 ,而 8 路 N4000( 共享的 SMP 结构 ) 的相对性能值是 6.3 。从这个结果可以看到, 8 倍数量的 CPU 换来的只是 3 倍性能的提升。

NUMA其实就是相对于SMP(UMA)而产生的,他解决了SMP扩展性问题,但带来了另外的问题就是扩展成本代价大,要达到一定的性能提升,需要付出成本是几何倍增加,一句话,不是线性的。显然这种架构无法在历史长河中一直走下去。说实话我没有见过这种架构的实际应用。

3. MPP(Massive Parallel Processing)


  和 NUMA 不同, MPP 提供了另外一种进行系统扩展的方式,它由多个 SMP 服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个 SMP 服务器 ( 每个 SMP 服务器称节点 ) 通过节点互联网络连接而成,每个节点只访问自己的本地资源 ( 内存、存储等 ) ,是一种完全无共享 (Share Nothing) 结构,因而扩展能力最好,理论上其扩展无限制,目前的技术可实现 512 个节点互联,数千个 CPU 。目前业界对节点互联网络暂无标准,如 NCR 的 Bynet , IBM 的 SPSwitch ,它们都采用了不同的内部实现机制。但节点互联网仅供 MPP 服务器内部使用,对用户而言是透明的。

在 MPP 系统中,每个 SMP 节点也可以运行自己的操作系统、数据库等。但和 NUMA 不同的是,它不存在异地内存访问的问题。换言之,每个节点内的 CPU 不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配 (Data Redistribution) 。

但是 MPP 服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前一些基于 MPP 技术的服务器往往通过系统级软件 ( 如数据库 ) 来屏蔽这种复杂性。举例来说, NCR 的 Teradata 就是基于 MPP 技术的一个关系数据库软件,基于此数据库来开发应用时,不管后台服务器由多少个节点组成,开发人员所面对的都是同一个数据库系统,而不需要考虑如何调度其中某几个节点的负载。

MPP (Massively Parallel Processing),大规模并行处理系统,这样的系统是由许多松耦合的处理单元组成的,要注意的是这里指的是处理单元而不是处理器。每个单元内的CPU都有自己私有的资源,如总线,内存,硬盘等。在每个单元内都有操作系统和管理数据库的实例复本。这种结构最大的特点在于不共享资源。

显然MPP是在NUMA仍然无法完全解决扩展问题下出现的产物,他横向扩展能力优秀,而且扩展的性能和成本基本成正比,基本属于线性扩展,但带来的问题是复杂性增加了。

当你的系统负载不大的时候,首选SMP,当单节点已经无法负载的时候,就应该直接采用MPP架构。

MPP的优势:
MPP系统不共享资源,因此对它而言,资源比SMP要多,当需要处理的事务达到一定规模时,MPP的效率要比SMP好。由于MPP系统因为要在不同处理单元之间传送信息,在通讯时间少的时候,那MPP系统可以充分发挥资源的优势,达到高效率。也就是说:操作相互之间没有什么关系,处理单元之间需要进行的通信比较少,那采用MPP系统就要好。因此,MPP系统在决策支持和数据挖掘方面显示了优势。

SMP的优势:
MPP系统因为要在不同处理单元之间传送信息,所以它的效率要比SMP要差一点。在通讯时间多的时候,那MPP系统可以充分发挥资源的优势。因此当前使用的OTLP程序中,用户访问一个中心数据库,如果采用SMP系统结构,它的效率要比采用MPP结构要快得多。

本文完。




MPP
上一篇:OLTP和OLAP